

ANNUAL REPORT 2006

Meeting date: June 15, 2006

Online Control of Spray Cooling Using CONONLINE

Software Sensor Development (CONONLINE)

Control Design & System Performance

Kai Zheng, Bryan Petrus Joseph Bentsman & Brian G. Thomas June 7, 2006

Department of Mechanical & Industrial Engineering University of Illinois at Urbana-Champaign

^htinuous Casting

onsortium

Outline

- Project Description
- Software Sensor Development (review)
- Model-based Control Design
 - Shell surface temperature control
- Control Performance
- Scenario analysis
- Metallurgical length overshoot control
- Ongoing work

•

INTRODUCTION

University of Illinois at Urbana-Champaign

•

- Goal
 - Maximize casting speed while minimizing cracks, and avoiding "whale" problem
- Methodology
 - Design and implement a control system that generates water flow rates such that:
 - desired surface temperature setpoint profile is maintained
 - metallurgical length ≤ max allowable (distance from meniscus to last roll)

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

BG Thomas

Current control approaches

1) Manual control:

operator setting of water flow rates, which is difficult when casting speeds are high and response times must be short

- 2) **Casting speed proportional control:** Setting water flow rates according to casting speed, which results in non-optimal cooling when transient conditions are encountered
- Conventional feedback control has never been successfully implemented due to unreliability of temperature sensors.

- Design
 - Find the individual Proportional Integral Derivative parameters
 - Zone-based design: 14 subcontrollers, one for each of 7 zones for each side of caster.
- Algorithm: At each second of time:
 - 1. Obtain the surface temperature profile from CONONLINE.
 - 2. Repeat the following 2 steps over all 14 zones:
 - 1. Compute the zone-based surface temperature average T_{avg} for current zone. And form the tracking error $T_{err} = T_{avg} T_{sp}$
 - 2. Use T_{err} to compute the water flow rate command = Nominalwaterflow + Δ waterflow(t), Δ waterflow (t) = $k_p T_{1err}(t) + k_i \int_0^t T_{1err}(s) ds$
 - 3. Send all water flow rate commands to CONONLINE, Caster, and Monitor

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

BG Thomas

17

CONONLINE Interface

CONONLINE Interface

- University of Illinois at Urbana-Champaign
- Metals Processing Simulation Lab
- BG Thomas 22

•

CONONLINE Interface

CONONLINE Monitor													
ogram Temperatur	e Profile	Show	Caster Paramete	ers									
			North										
			South										
North Caster Parameters													
Running mode			-1	Mold heat flux BF1 (MW/m2)	2.55	Carbon, %	0.0480						
				Mold heat flux BF2 (MW/m2)		Manganese, %	0.3700						
Caster mode			1		2.55	Sulfur, %	0.0050						
Spray water p	Spray water pattern			Mold heat flux NF1 (MW/m2)	2.55	Phosphorus, %	0.0090						
cast, in prog.	cast. in prog. cast. tailing			Mold heat flux NF2 (MW/m2) Mold water steel grade	2.55	Silicon, %	0.0180						
						Chrominum, %	0.0440						
cast. tailing					9.0000	Nickel, %	0.0430						
liquid core red	liquid core reduct.			Meniscus to heat interface (mm)	2344.8999	Copper, %	0.1330						
cost longth			100 15 00	Maniana da adamad dait	1177.00	Molybdenum, %	0.0110						
castiengui	cast length			Meniscus lo strand tai	1177.00	Titanium, %	0.0030						
Casting speed	Casting speed (mpm)			Meniscus to mold top (mm)	100.00	Aluminum, %	0.0360						
Caster width	Caster width (mm)			Mold water inlet press. (mpa)	0.62	Vanadium, %	0.0020						
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						Nitrogen, %	0.0008						
Caster thickne	ss (mm)	90.00	Mold water inlet T (deg C)	43.00	Niobium, %	0.0010						
Tundish temp	Tundish temperature (deg C)			Mold water outlet T BF1 (deg C)	33.12	Tungsten, %	0.0000						
Tundish temp. sup. ht. (deg C)			1552.00	Mold water outlet T BF2 (deg C)	33.12	Add. weight 1, %	0.0000						
			1333.00		33.12	Add. weight 2, %	0.0000						
Tundish weight (ton)			2.00	Mold water outlet T NF1 (deg C)	33.12	Add. weight 3, %	0.0000						
Spray water inlet T (deg C)			25.0000	Mold water outlet T NF2 (deg C)	33.12	Add. weight 4, %	0.0000						
-,, ander (uog o)						Add. weight 5, %	0.0000						
Nozzle subme	Nozzle submerg. depth (mm)			Mold water delta T BF1 (deg C)	-9.88	Add. weight 6, %	0.0000						
Heat ID Grade			1232-02	Mold water delta T BF2 (deg C)	-9.88 -9.88	Add. weight 7, %	0.0000						
			1004RB			Add weight 8, %	0.0000						
				non name asia i ni i (acg c)	0.50	Add weight 9, %	0.0000						
				Mold water delta T NF1 (deg C)	-9.88	Auu. weight 10, %	0.0000						

•

Scenario analysis

- Speed ramps
- Caster startup
- Slow down
 - "Dip"
 - Sudden slow down (emergency)
- Spray pattern change
- Superheat change

Casting-speed-proportional (old) Controller Performance Casting Speed Ramp Up

Model-based Control Performance Casting Speed Ramp Up – fixed temperature setpoint

Time (sec)

Casting-speed-proportional (old) Controller Performance Casting Speed Ramp Down

Model-based Control Performance Casting Speed Ramp Down

Metallurgical length control

- Ensure the steady state metallurgical length is within bound by examining it offline and increasing the water flow rate if necessary
- As a first step: design a transient metallurgical length controller to ensure the metallurgical length does not overshoot when changing from one safe condition to another.

University of Illinois at Urbana-Champaign

Transient Metallurgical length control

Metals Processing Simulation Lab

BG Thomas

- A small amount of overshoot (0.1m) results under good temperature control.
- Must trade the performance of temperature control,
 I.e. overcool the shell surface, for that of the
 metallurgical length control
- The trade can be done by temperature setpoint conditioning

Performance: very little temperature control performance is sacrificed!

- Other features:
 - Use the shell surface temperature profile to calculate the ideal roll gap to avoid bulging or compression problems, etc.
- New control strategies:
 - avoid cracks by keeping surface temperature above Ar3 temperature until after unbending, or
 - get the temperature down below Ar3 for a significant time prior to unbending.
- Next generation control:
 - output optimal casting speed profile so that cracks can be minimized.

	University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	BG Thomas	56
(Cor)	tinuous Casting Consortium					
		Tha	ank You!			